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Abstract 

A method is described by which the relativistic Riemann invariants can be found for a 
fluid with an arbitrary equation of state, undergoing dissipation and moving in a general 
metric. Specific formulae are derived for a spherically symmetric system. Limiting cases 
defined by relativistic and non-relativistic gases, both warm, cold, fast and slow are 
examined. We prove that the invariants do exist, and a necessary and sufficient condition 
for their determination is the solution of a differential equation with the structure of an 
exterior one form of two components. The common parameter of these components is 
the characteristic space-time direction which is also derived in the process of determining 
the invariants. The characteristic surfaces, being the surfaces over which initial data is 
carried, all coalesce to the forward light cone in the extreme relativistic limit. Relativistic 
fluids emanating from receding sources appear to increase their internal kinetic energy 
as they decelerate. 

A non-linear distance-velocity relation for these waves is evident in the differential 
equations which are found. Their full meaning remains to be explored. 

1. Introduction 

A set o f  par t ia l  differential  equa t ions  m a y  be ro ta ted  into a d iagonal  
fo rm such tha t  they become an o rd ina ry  set. This t r ans fo rma t ion  m a y  be 
cal led the character is t ic  t r ans fo rma t ion  o f  the set since the result ing solu- 
t ions o f  the o rd ina ry  equat ions  are known  as the characteristic solut ions,  
or  character is t ic  curves. These curves de termine  the compat ib i l i ty  o f  an  
imposed  set o f  b o u n d a r y  condi t ions  wi th  the uniqueness o f  the solut ion in 
the doma in  o f  interest .  F o r  example ,  the classical  Poisson par t ia l  differential  
equat ion ,  by  na ture  o f  its character is t ic  curves, requires only  tha t  the 
funct ion  or  i ts g rad ien t  be specified at  the  b o u n d a r y  in o rde r  for  the field 
to  be de te rmined  in the d o m a i n  o f  interest .  This type o f  characteristic is 
called a Dir ichle t  o r  N e u m a n n  p rob lem,  depending  u p o n  the choice o f  
b o u n d a r y  data .  Once this choice is made ,  then the symmetr ies  o f  the 
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boundary are projected into the region of interest and may be found by 
geometrical techniques, such as the method of conformal mapping. On 
the other hand, the classical wave equation requires the specification of 
both the function and its derivative at the boundary, consistent with 
Newtonian dynamics, and this requirement is called a Cauchy problem. The 
imposition of Cauchy boundary conditions upon a set of partial differential 
equations whose characteristics are incompatible with that prescription 
results in an over-specification of the problem, a non-unique solution, and 
physically the resulting solution will not preserve any of the symmetries 
which were initially imposed. The classical wave equation serves as a 
prototype for second-order partial differential equations which accept 
Cauchy-type data and are called by geometers as hyperbolic equations. 
Generally these equations will yield a theory of observation because most 
physical systems encountered have both space and time represented in the 
differential equation set. For this reason, the slopes of the characteristic 
curves are called the characteristic eigenvalues and are of interest because 
in the hyperbolic case they represent the group velocity of wave motion. 
There is an immediate discrimination between space and time in the 
development of the theory of characteristics which appears to be contrary 
to the basic dictum of relativity that space and time should not be dis- 
criminated. This apparent philosophical contradiction is one imposed by 
the theory of measurement in which we are required to isolate a spatial 
point and then integrate over time in order to gather information, and 
until we can develop techniques to do the reverse, we shall have to reconcile 
the beauty of Einstein's thinking with the rank actualities of measurement. 

Therefore the relativistic theory of characteristics takes a set of non- 
discriminating equations and seeks to discover how a violation of that 
symmetry at the boundary is carried through the entire space-time plane. 

A particular point of interest to physicists is that it is only upon charac- 
teristic curves which energy and momentum propagate and it is only upon 
characteristic curves which discontinuities propagate. All waves must 
carry with them discontinuities as can be argued by the following. Inside 
the wave packet, the disturbed region has non-zero solutions to the dif- 
ferential equations of interest. Outside the wave packet, in the region not 
yet reached by the disturbance, the solutions may be absolutely zero. Thus 
a Taylor expansion from either side of the boundary of the disturbance 
must fail to connect the two regions; hence discontinuities must appear in 
some derivative of the physical variable being measured or being propagated. 
Most waves, generally treated, have discontinuities in the higher order 
derivatives with continuous zero and first derivatives; however, shock 
waves represent discontinuities in the function itself being propagated forth. 
Furthermore, the slightest non-linearity in the system of equations couples 
the various coefficients in the Taylor expansion so that ultimately, in time, 
a higher order discontinuity may have its effect in the spatial part of the 
lower orders of the observable. 

The characteristic curves are purely a function of the partial differential 
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equation set and independent of the geometry of the boundary. By a 
non-linear coordinate transformation we rotate the set into diagonal form. 
In this diagonal frame the original collection of independent variables, 
viz. pressure, density, energy, is contracted into some scalar function, now 
determined by an ordinary differential equation. The scalar function, in 
hydrodynamics, is known as the Riemann invariant. The constant of 
integration is fixed at the boundary and the Riemann invariant is conserved 
along the characteristic curves which emanate from the initial data. The 
ripples seen when a pebble is tossed into the water represent surfaces which 
carry information of the initial disturbance. Since most fluids are homo- 
geneous and isotropic, these ripples generally reflect that symmetry and 
appear as a set of concentric circles on the water's surface. In an ideal star, 
they would be concentric spheres. The ripples plotted in the space-time 
plane are the characteristic surfaces of the fluid. Their group velocity is 
u :t: c, in which u and c are the fluid and sound velocities, indicating that 
ripples may be explosive or implosive as the only two possibilities. This 
group velocity is the characteristic eigenvalue of the curve, and may change 
with the physical properties of the medium. A solution to the original 
partial differential equation set whose independent variables are restricted 
to values imposed by the characteristic equation represents the Green's 
function to the problem. Hence the existence of a Green's function is not 
a foregone conclusion and requires the existence of a solution to the 
characteristic differential equation set. 

One can imagine all of space filled by a non-linear characteristic co- 
ordinate net. Any point in space-time is then determined by the intersection 
of two independent characteristic curves which can be traced to their point 
of origin on the boundary. The chain of points along the boundary confined 
between the intersection of these characteristics defines the domain of 
dependence of the particular point upon the initial data. 

Any finite region in the boundary has emanating from it families of 
characteristic curves whose development into space-time define a region 
of influence of this initial data with sharp, causative boundaries. 

The partial differential equations of classical hydrodynamics lend 
themselves to a hyperbolic form in which case the characteristic roots and 
surfaces are real (Courant & Hilbert, 1937). Their solution is a Cauchy 
problem over a restricted domain, thus some initial data specified on a 
space-time surface will have a finite range of influence beyond which points 
exist that can have no causal connection to that data (Courant & Friedrichs, 
1948). The designation of these restricted domains of causality in classical 
hydrodynamics must be connected to relativistic hydrodynamics in a 
continuous fashion. Much as elements in the proper Lorentz group can 
evolve continuously only to time-like representations of the orthogonal 
group in three dimensions, the classical Riemann (Riemann, 1876) invariants 
of hydrodynamics must have a relativistic extension which remains hyper- 
bolic. A classical Mach line separates two adjacent regions which are under 
the influence of independent pieces of data and across which observables 
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take on discontinuities. The names of Riemann and Mach permeate 
the classical literature in this subject, therefore it appears quite natural to 
extend their formalism to include general relativity. The Riemann invariants 
have application to astrophysical catastrophies and to self-gravitating 
relativistic pulsations (Cohen, 1969). These applications are to be discussed 
in another communication. Here we deal with the logical development of 
these invariants. We now derive the entropy conservation law in general 
relativity. It being a thermodynamic statement, will follow naturally from 
the stress energy tensor. 

2. Analysis of  Dissipating Fluid Motion 

Consider the stress tensor of a relativistic fluid in units of c = I. 

T ~'~ = [E + p  + p]# 'u  v + gr,~p (2.1) 

Then a scalar reminiscent of the work may be manufactured in which 
the external sources of energy and momentum delivered to the fluid are 
denoted by F ~', 

g ~ T~" = g~, u ~ F ~ (2.2) /~r U ~ ;  v 

Baryon conservation for a fluid of similar particles is written as, 

(uV p);, = 0 (2.3) 

in which p is the rest mass density. Equation (2.2), when expanded in view 
of (2.3), becomes 

gu~u~ + p + E)/p);~ + g~o, gU~u~ =g~,o~u~ (2.4) 

The contravariant material velocity four vector is normalized such that, 

gr,~,u~u t' = -1  (2.5) 

We require that 
"~ ~ (2.6) gu~g = o~ 

and observe the chain rule of differentiation, 

(u~(p + p + E)/p);~ = ((p + p + E) /p)@ + u~((p + E)/p);~ (2.7) 

Combining these results gives, 

-pu~[(p + E)/p];, + u~p;, = gu~, u~ F*' - (p + p + E)  @ (2.8) 

We define Qo as the heat transfer rate to the fluid in a rest frame. 

Qo = g4~ u4 F ~ (2.9) 

In the case of a dissipating fluid, Q0 is negative. Since E, p and p are scalars, 
their covariant derivatives reduce to the ordinary form. 
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This reduction yields, 

u*[E(ln E),,, - (p + E)  (lnp),~] = Qo (2.10) 

Equation (2.10) is independent of the metric. 
By the virial theorem, p is equal to (1"-  1)E in which 1" is the ratio of 

specific heats. Equation (2.10) then becomes, 

Dp - a 2 Dp = 0o / (1" -  1) (2.11) 

in which a 2 is the isentropic speed of sound and D is the classical flow 
derivative, 

a~ = 1"p/p (2.12) 

D =_0_a a 
c Ot + fl' ff~l 

It is easily seefi that the isentropic law results for an adiabatic system 
(Q0 = zero). 

We now place the continuity equation (2.3) in dimensionless form, 

uV(ln u0. ~ + uV(ln p), ~ = - 1 " ~  u ~' (2.13) 

Although this equation is not independent of the metric, the metric is 
brought to the right-hand side as an inhomogeneity. In the classical limit 
with spherical coordinates equation (2.13) becomes 

Ou/Or + ~ Op/Ot + (u/p) Op/Or = -(2/r)  ur - cot Ouo (2.14) 

The inhomogeneity represents the areal depletion, more familiar in cases 
of time independent spherical symmetry when the following conservation 
law results as an integral of (2.14), 

pur 2 = conserved (2.15) 

We now turn to the spatial part of the equations of motion (Latin index), 

[(p + E + p)uJu [~ + g~p];[~ = F ~ (2.16) 

Using the continuity equation and separating spatial and temporal deriva- 
tives gives, 

[(p + E) u J Uk];k + pu k l, IJ;j + gjkp; k q- [(p + E) u j U4];4 +/9/,/4 U{4 = F j (2.17) 

In the interest of clarity, we now limit ourselves to motion in one direction, 
u' # 0, u 2 = u 3 = 0, u 4 # 0. We adopt a spherical diagonal metric in order 
to obtain results relevant to stellar systems, 

with 
gll = -1 ,  g22 .~_ --r ,  __g33 = r sin 0, g44 = 1 
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A more complete derivation may be picked up at this point ; t  however, 
most of the results will be independent of the metric tensor, hence the 
calculation is simplified in this system. With a slight rearrangement, these 
restrictions leave us with the following equation: 

[p + 2(p + E)] u I u~l + (u I u I - 1)p;l + u I u I E;1 

+ u lu4(p + E);4 + (P + E + p)u 4 u~4 + (p + E )u  x u44 = F 1 (2.18) 

All the forces of external fields, gravity and radiation are now absorbed 
in F ~. According to Thomas (1930), the effective external force is the 
covariant derivative of the field stress tensor with which the fluid interacts. 
Most of our results are independent of F ~ and hence we assign only a 
generic symbol to this field. Equation (2.5) implies that, 

u4 u 4. = u 1 u~ (2.19) 

with which we derive 

[p + 2(p + E)] (u I u~l ) + u4 u4p; 1 + / / l ( u l  E;I) 

+ [p + (1 + (ul/g4) 2) (p  -q- E)] (u 4 U~4 ) q- U 1/~/4p; 4 -}- b/l(u 4 g ;4  ) = F 1 (2.20) 

We now utilize the thermodynamic postulate for the existence of an equation 
of state which is amphimorphic among its variables. 

E(p ,  p) = constant (2.21) 

implies 
p; = (Op/OE) E; - (Op/OE) (OE/Op) p; (2.22) 

then Equation (2.20) becomes 

[p + 2(p + E)] u 1U~I -~ (1 "Jy (/14//-/I) 2 (Op/OE)) u' E;1 

- (ua u4/u (ap /ae )  ( a E / a t , )  u ' 

+ (p + (1 + (ul/u4) 2) (p + E ) ) u  4 u h + ul((Op/OE) + 1)u 4 E;4 

- u~(Op/OE) (OE/Op) u 410;4 = F a (2.23) 

"~ Any element of the Lorentz group may be expressed in polar form (Yamanouchi, 
1970) 

g~ = gO t a~ 

in which G is a positive symmetric matrix and gO is a reduced matrix which contains an 
element of 03 as a subgroup, i.e. 

o [ 0 3 1  O \  

We therefore can redefine the pressure in case of a more general metric 

g.,,vP = gO p~ 

in which P~ = G~ p. Furthermore G has zero covariant derivative so that 

and this substitution into equation (2.17) will then permit an extension of this derivation 
into general relativity. 



RIEMANN INVARIANTS AND INITIAL DATA SURFACES 265 
We now divide the entire equation by pu t, place the derivatives in logarith- 
mic form, and express the invariant derivative in terms of the ordinary 
operator plus the Christoffel rotation coefficients. We note that for a 
spherical metric, the only non-vanishing rotation coefficients are those with 
an angular index and these are not to be found in this equation; hence the 
covariant derivative may be replaced by the ordinary operation. 

We define the operator 

Dl = u i ~~ In (2.24) 
oxl 

then, 

(1 + 2 P ; E ) D l u l  + ( 1 0 p  +~(u4 u4)/(ul ul)) y Dl E 

- -  U 4 ~t4/(b/1 U l )  Op/OEOE/Op D1 p + (1 + (1 + (ut/u4) z) (p + E)/p) D 4 U 1 

+ (Op/aE + 1) ~-D4 E - ap/OE(ae/oo) D40 = F'/(Ou I) (2.25) 
P 

3. Discussion of  the Method 

The method we employ to find the Riemann compatibility relations 
arises out of a general technique first developed by Schwartz (1951) to 
analyze discontinuous initial data. This method has been reduced by 
Lax (1954) for sets of equations with two independent variables in which 
the initial data is Lipschitz continuous. Our technique is the third simpli- 
fication which can be developed in a short space which follows. 

We now have three partial differential equations of first order in two 
independent variables (space and time) and three dependent variables 
(u~,p,E). These three equations may be brought into matrix form if the 
continuity and entropy equations are expressed in terms of the logarithmic 
operator [2.24]. The structure which results is the following: 

T D1 }[I + SO 4 ~J = ~9 (3.1) 

in which 7 / is a three-component vector representing the state of the fluid, 

' e  = (p, u 1, E)  (3.2) 

and ~ is the three-component generalized force with dimension of inverse 
length, 

c~ = ( - I '~ ,  u ~, F1/(pul), Qo/(p + E)) (3.3) 

We caution that the state vector has incommensurable components 
(velocity, momentum, energy) and it makes no physical sense to normalize 
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it. It is a convenient multicomponent quantity which will evolve to the 
Riemann invariant. The temporal matrix has components 

T l l - ~  1, Tl2=(ul/u4) 2, T I 3 = 0  

T21 = -ap/OE(OE/ap), T22 = 1 + (1 + (u~/u4) 2) (p + E)/p 

T23 = E(1 + ap/OE) 
(3.4) 

P 
T31 = 1, T32 = O, T33 = - E / ( p  + E)  

while the spatial matrix has components, 

Sll = 1, S12 = 1, $13=0 

521 = --(U4/ul) 2 (~p/Og) (OE/Op), S22 = 1 + 2 p + E 
P (3.5) 

823 = (E/p)(1 + (p/E)(u4/ul) z) 831 = 1, 

- E  
$32=0,  $33= p + E  

All of the matrix coefficients are real and enable us to construct a left-side 
inverse to the temporal matrix which conjugates the entire equation (3.1) 
to yield the following form 

D41/J+  T-X SDt  tF= T -1 q) (3.6) 

Since S and T consist entirely of real coefficients, so will their inverses 
and hence (T-~S)  will also. If  the eigenvalues and eigenvectors of T - ~ S  
are real, then the equations (Lax, 1953) are hyperbolic and will accept 
Cauchy type initial data which is at least Lipshitz-~ continuous. Let ek be 
the left-side eigenvector which precipitates the eigenvalue )t k from the 
matrix product. If  

A - T - I S  (3.7) 

then 
ek A = )t k ek (3.8) 

and upon multiplying equation (3.1) on the left by the eigenvector ek, we 
obtain 

[D4 + )~ D1] (ek. ~ )  = ek T -l  ~ (3.9) 

The characteristic directional derivative may now be defined as 

dk = D4 + hkD~ (3.10) 

It has a slope in the space-time plane of  

dx 1 u 1 
dx 4 = ~ )t k (3. l l) 

t Lipshitz continuity implies that a chord drawn between any two points of the data 
will have a slope which is bounded. 
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The quantities e k D T  and ek T-1 r  are now scalars; we abbreviate, 

2 =  ekT -I ~ (3.12) 

The equation of the Riemann compatibility relations is now a first-order 
differential equation, or one form. The classical Riemann invariants are 
obtained from a zero source (Z = 0). The characteristic directional deriva- 
tive may now be defined by the following expression of equation (3.9), 

ekdkYt= Z (3.13) 

or in expanded form, 

elk dkp + e~ d~u I + e~ dkE 
1 - i  = ek(Tll Cj + T-{~ r + T-{~ r + ek(T212 -1 r 
+ T~  -1 3 -1 Cz + T13 ~3) + ek(T31 r + T~  r + Tf~ ~ )  (3.14) 

The eigenvectors ek are not orthogonal; hence the coordinate system of 
characteristic lines generated by equation (3.11) is not an orthogonal one. 
The eigenvectors ek are left-side eigenvectors as opposed to those used in 
quantum mechanics which suffer the operation of differentiation. These 
eigenvectors rotate the differential operators in the space-time plane until 
all of the components of the state vector have the same value. 

It is a result of this analysis that this differential one form in three com- 
ponents can be contracted into one of two in which case it is absolute that 
a single integral surface exists. Contingent upon demonstration of this 
contraction, we conclude that the Riemann invariants exist continuously 
to the extreme relativistic limit where they evolve to the light cone from 
their classical values. 

4. The Characteristic Directions 

After a straightforward but lengthy calculation we find the following 
results for the eigenvalues. One value is cofluid as is the classical case, 
while the other two emerge as the relativistic analogues of the forward and 
backward characteristics, 

2`0 = 1 (4 .1)  

1 / [ E O E p + E + p / [ E  E OE'~] 
l zV fl,X/ [ p Op p '~  E / \-p p ~ E Op ] J 

2 ,+ =1+  
~,2[fl2 E p + E + p a F ~ / [ E  E OF~] 

[ p p + E  O P l \ P  p T E ~ ] I  

in which we have redefined 

u' = ~,y, 7 = 1 / V ( - g , j y ~ J )  (4.2) 

in order to facilitate reduction to the results of special relativity. We notice 
that no spatial terms enter into this expression. 
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If we now assume that the eigenvalue is the hyperbolic composition of 
flow and sound speeds, 

/3 4-/3s (4.3) 
/3a 1 • 

Then we conclude that the relativistic speed of sound is given by 

J[Op(  p + E  aE O )] (4.4) 
~s= ~ p+e+o aop+E+o 

The characteristic eigenvalues become, 

~1 
- / 3  z 

,~_+ = 1 • l• (4.5) 

It is seen that both characteristics coalesce to the light cone in the ultra- 
relativistic limit. Just as in the classical case, supersonic flow/3 >/3s leads 
to two positive definite characteristics. Thus the initial sensing of a rela- 
tivistic explosion will always be followed by an echo, which represents a 
negative supersonic characteristic. 

Two possible simplifications of this formula may be made. In the case 
of  an adiabatic system, the first law of thermodynamics gives the relation 

p = -p aE/ap (4.6) 

In which case 
ap E 

/3. = J [  (~-~) = p--qy_-ff~ p] for dQ = 0  (4.7) 

Otherwise the formula may be contracted in terms of the average kinetic 
energy per particle. 

p ~ (E/p) = p aE/ap E (4.8) up 

and if 

then 

E/p=~ (4.9) 

= / l a P P -  a /aP  (4.10) 

The energy ~ is the internal energy per particle from which the rest mass 
energy has been removed. The speed of sound always remains real as long 
as ap/OE is positive. Its reality guarantees a causal relation between any 
space-time point and some initial data on the boundary. There seems to 
be no evidence that this derivative can go negative, in which case the 
characteristics would be imaginary and no information would propagate 
out of such a system. The original calculations of Chandrasekhar (1957) 
of the relativistic statistical mechanics of an electron gas permit no such 
possibility, although I should remark that these calculations were based 
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upon the assumed decoupling of the Dirac equation into large and small 
components, which loses its validity in the ultrarelativistic limit. It therefore 
might remain to be investigated if the statistical integrals in this limiting 
case could reverse the sign of the energy in which case the system would 
be acausal, being propagated into the past providing the possibility for 
the creation of antiparticles. 

We now examine various kinetic models. The Maxwell-Juttner model 
of a non-degenerate ideal gas is reviewed in Chandrasekhar (1957). It has 
three interesting limits; hence three limiting equations of state, derived 
from the virial theorem. 

(A) e=- p(1 +5{P 2  warm relativistic monatomic gas 

(k T ~ rn) 

(B) E =p/ ( l " -  1) cold relativistic gas 
(at = ratio of specific heats) 

(C) E = 1)/3 hot relativistic gas (4.11) 
(/" = 4/3 in B) 

Reductions B and C require no dependence of the internal energy upon 
density, the speed of sound then reduces to 

/3~-+ V'[(_F'- 1)l-'p/(I'p + ( F -  1)p)] (4.12) 

which in the individual cases reduces further to 

(B) p ~ p + E ,  V ' (Pp /p )+- - f l~x / ( l - ' - l ) ,  p ~ p + E  (C) (4.13) 

These are not extreme limits, since the intermediate case of the Maxwell- 
Juttner gas gives the following first-order correction for finite density 
dependence 

J (  1+(27/4)/34 ) ( 4 . 1 4 )  
/3~ =/30 (1 + (45/4)/34) (1 + (3/2)/3o 2 + (27/8)/36) 

/3 o =  ,p/e 

valid for systems in which the thermal energy is comparable to the rest 
energy, i.e., 

kT,.~ rnee 2 ~ 6 • 109 ~ (4.15) 

for an electron gas. For systems with temperatures in excess of a billion 
degrees, the formula given in Chandrasekhar (1957) may be used and the 
speed of sound will be a complicated function of those integrals which are 
expressible as combinations of Hankel functions. In the Maxwell-Juttner 
case, the energy-density change is negative, and we caution that this 
derivative is taken at constant pressure, not at constant entropy. We have 
avoided the use ofisentropic derivatives in order to include inhomogeneities 
of dissipation, external forces and geometric curvature. 
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Degenerate gases will require appropriate equations of state with which 
to evaluate the terms in the speed of sound. In this case the result is a 
complicated function of the Fermi integrals (Chandrasekhar, 1957). 

5. The Riemann Compatibility Relations 
The left-side eigenvector which will diagonalize the fluid matrix along 

non-redundant directions, has the following components 

g a p  
e(+ o) = 

p +EOE 

e ( l )  = OE (o) 

-+ - 0---P e+- (5 .1 )  

e<+2 ) •  E \ s 

eT' = Eel~ 
P 

in which e~+ ~ is a convenience. We note that only e~ 2) actually is different 
for forward and backward characteristics. The proportionality factor 
between vectors one and three is an integrating factor which reduces a 
classical Pfaffian of three dimensions to one of two (Forsyth, 1959). This 
reduction fulfills necessary and sufficient conditions for the existence of a 
single integral surface upon which these invariants will lie for all relativistic 
conditions. Thus they exist in all cases. Equation (3.14) may now be written 

-e~~176 - _ (5.2) 

If we carry out the reduction implied by equation (3.14) and expand the 
results, we obtain the following differential equation for the inhomogeneous 
Riemann compatibility relations which are propagated along characteristics 

P dlnp • (p + E+ l) fl~ l dfiflz 
P P 

fl_ zk fis[• F/P_ R2[ 1 + p + E( 1 • /3/fi~)) 2 
- P ~ , ~ - ( ~ +  ~/3~)Oo/p] 1 -/3~ [ ~ '  r/3 "" \ 

(5.3) 
in which we have dropped the superscript in the external force. It is under- 
stood to be a vector colinear with/3 and its form may be that suggested by 
Oppenheimer & Volkoff (1939). 

The derivative is taken along a characteristic direction, and in integrating 
the radial dependence of the source we must utilize the relation 

o /3• o 
d = ~ + i • fifl~ Or (5.4) 
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For a cold gas, moving at relativistic velocity we require p >>p + E, in 
which case the left-hand side of equation (5.3) becomes 

tio dlnplF • 1 dtifl 2 (5.5) 

in which 
tio = V(I~p/p) (5.6) 

If the system is also isentropic, then 

tio ~ p(r-1)lr (5.7) 

and the following relation results, 

(1 +ti  
~ • �89 In \ f _ f l ]  is conserved (5.8) 

For a slowly moving gas (small/3) the classical result (Courant & Friedrichs, 
1948) is obtained 

]3~ 4- t3 is conserved (5.9) 
/ ' - 1  

For a hot relativistic gas, p + E >~ p, the left-hand side of the differential 
equation becomes 

p d~_~ • B~ 1 dti _ ( 5 . l O )  

in which the speed of sound becomes 

B~ = ~-~ 1 -- -+ ~r 11 -+ 1/~r (5.11) 

Employing the virial theorem produces the following invariant in the 
absence of inhomogeneities 

1 +/3 +g (5.12) 
1 - t i P -  

in which 
k = 2 ( F -  1)/(PBs) -~ V'(3)/2 (5.13) 

The inhomogeneity in (5.3) contains a geometric term which is dilated 
at high velocity while the effect of the external force is contracted, thus at 
high velocity the motion is dominated by pure geometry and not gravity. 
Assuming no explicit time dependence occurs in the fluid parameters, 
equation (5.3) reduces to the following 

P dlnp 4- (P + E+ l)ti~l 

- R ti+tisr,_ l +P+e(l• ~)] 2~ dr (5.14) 
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Information emitted in the form of compression waves will travel along 
positive or negative characteristics depending upon whether or not the 
source approaches or recedes from us. In this case the appropriate plus 
or minus sign in equation (5.14) must be used. In all probability the negative 
characteristic curves may be more of interest to cosmic ray physicists who 
build models and to cosmologists concerned with primordial events. 

Consider a hot plasma, then equation (5.14) reduces to the following 
along a negative characteristic, 

dff = _S2f f - /3~(1 _ ff/ff,) ?_~ dr (5.15) 
p P~-r, d lnp  - ff' 1 -/32 r ,  1 - /32"  ~/( /32) r 

This is a differential one form of three components whose exterior deriva- 
tive does not vanish. Therefore a solution exists only as the intersection of 
two integral surfaces. According to the method of Euler (see Forsyth, 
1959) we consider a part of the one form which has zero exterior derivative, 
and set dp= 0. This results in the following differential equation, 

cl(1-ff~) /( 3 2) ff~/3 ff~(/3-/3~) ff~(/3 /3,1~ = 7  (5.16/ 

in which c, is a separation constant. If  we examine the limit 13 </3~, only the 
first term in the bracket remains which integrates to 

2 
/3 = rk + r -  k (5.17) 

in which 
k =/3~/(1 - ff~) < 1/2 (5.18) 

and Off~Or < 0, i.e. there is a deceleration with distance. The relativistic 
horizon is given by r = 1, and the relation gives the velocity/3, as a mon- 
atomic function of the distance. 

This distance velocity relation for ultrasonic hot matter flowing on 
negative characteristics becomes the following 

/3 = 2rk/(r 2k + 1) --~ r k < ~/(r), r < 1 (5.19) 

If we now seek the ultrasupersonic limit ff~ </3 ~ 1, the equation for the 
Riemann invariant reduces to 

d/3 2/3~ dr 
= (5.20) 

V(1 - /32 )  1 - / 3 2 r  

which accepts the integral 
2 1 

{ ff~ i n - ]  (5.21) / 3 = c o s \ l _ f l ~  r z] 

This is an oscillatory terminal phase in which the velocity increases with 
distance while decelerating. 
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The complete integration of  equation (5.16) yields the following integral 
surface 

fl---~ (sech-' fl~) -~ log 2 - log ((/3 -/3s)/(1 - fl/3,)) = (5.22) 1 -  .~/(1 _ ~2)/3~ + c l lnr  2 ez 

Then the remaining part of  the differential one form (equation (5.15)) 
may be integrated into a form of equation (5.8). 

__/3~ , 1 + / 3  
:k (1 - c,)�89 1 7  ~ = ca (5.23) 

/ ~ - 1  

assuming the virial theorem relates pressure to energy. These are two integral 
surfaces related by the separation constant c~, which can be removed to 
yield 

1 fl%2 ( sech- l/3) + l o g 2  - log ( ( f l ,  v/( 1 _--fl2)fl~)/(lfl2 - fl/3~)) 

{~g,ntt'+P)/U-P)c3-fl~ } ln2 c2 • - , , ~ = 7 -  ~7;~----~),:F 1 • r = (5.24) 

The constants e2 and c a are integration constants to be fixed at a boundary. 
What is disguised in these integrals is the acceleration process which 

occurs on the negative characteristic. According to equation (5.12), we 
have the following homogeneous Riemann invariant 

I - / 3 ,  1 - 
1 7 ~ P  1 7 fl,~Po (5.25) 

in which the index zero stands for an initial value. If  the fluid decelerates 
as it leaves the original event, as it must from a thermodynamic argument, 
then we have that 

/310) > fi~ (5.26) 

It then follows that, p > P0. 
In other words, if the fluid decelerates of its own accord, then the kinetic 

energy of organized flow is fed into internal energy and the fluid gets hotter. 
This effect is independent of the geometrical inhomogeneity introduced by 
the Christoffel rotation term. However, even considering that inhomo- 
geneity (equation (5.24)) we see that there will be a further enhancement 
of  the energy as the fluid approaches the observer while slowing down. In 
other words, the structure of the inhomogeneous Riemann invariant upon 
the negative characteristic is of  the form, 

/ 1 - - f l  1'~ dt ]---4-~) = K(r ) (5.27) 

Hence, as K increases, while /3 decreases, the relativistic pressure and 
internal energy must increase. 
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Although this is an apparent physical interpretation of these equations, 
their full physical meaning remains to be explored. 

Acknowledgements 
The author is indebted to Dr. A. H. Taub and Dr. B. F, Schutz, Jr., whose review of 

this manuscript clarified many points, and brought to the surface issues of controversy. 

References 
Allen, W. (1954). Astrophysical Quantities, Chapter 14, p. 242. Athtone Press, London. 
Chandrasekhar, S. (1957). An Introduction to the Study of Stellar Structure, Chapter 10, 

p. 394. Dover Pub. Co., New York. 
Cohen, J. M. (1969). International Journal of  Theoretical Physics, Vol. 3, No. 4, p. 267. 
Courant, R. and Friedrichs, K. O. (1948). Supersonic Flow andShock Waves, Chapter II, 

p. 48, and Chapter III, p. 87. Interscience, New York. 
Courant, R. and Hilbert, D. (1937). Methods of  Mathematical Physics, German edition, 

Vol. II, Chapter 50, p. 313. Springer-Verlag, Berlin. 
Flanders, H. (1963). Differential Forms with Applications to the Physical Sciences, 

Chapter I, p. 2. Academic Press, N.Y. 
Forsyth, A. W. (1959). Theory of  Differential Equations, Vol. I, Chapter I, p. 11. Dover 

Pub. Co., New York. 
Lax, P. D. (1953). Communications on Pure and Applied Mathematics, 6, 231. 
Lax, P. D. (1954). Annals of  Mathematics Studies, 33, 211. 
Oppenheimer, J. R. and Volkoff, G. M. (1939). Physical Review, 55, 374. 
Riemann, G. F. B. (1876). Gesammelte Werke, Chapter VIII, p. 145, and Chapter IX. 

Teubner-Verlag, Leipzig. 
Schwartz, L. (1951). Theorie des Distributions, Actualities Scientifiques et Industrielles, 

Vol. II, No. 1122, p. 137 (see also Vol. I, No. 1245, 1957); Mathematics for the Physical 
Sciences (1966). Paris-Hermann. 

Taub, A. H. (1948). Physical Review, 74, 328. 
Thomas, L. H. (1930). Quarterly Journal of  Mathematics, 1, 239. 
Yamanouehi, T. (1970). Mathematics Applied to Physics (edited by G. A. Deschamps 

et al.), LC-78-79553, Chapter X, p. 595. Springer-Verlag, New York. 


